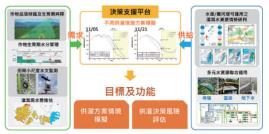
佈建智慧灌溉系統,

強化調度與防災韌性

李元喻 正工程師 農業部農田水利署農田水利管理組

近年受氣候變遷影響,導致降雨豐 枯懸殊,此時取自河川及壩堰之灌溉用 水將受到直接衝擊,而取自水庫之灌溉 用水又易發生與其他用水標的競用之情 況。此外,面對短延時強降雨等極端天 氣事件頻仍,易致使農田水利設施及農 作物受災毀損,以及糧食安全及部分區 域地層下陷等各項與灌溉用水有關課 題,顯見灌溉用水管理工作日漸困難且 複雜。

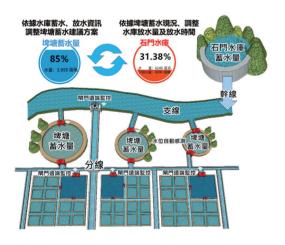

為了有效率的將水資源適時適量輸送至農地中,農業部農田水利署(以下簡稱農水署)持續導入新興科技輔助灌溉用水管理,包含整合應用資通訊(ICT)、物聯網(IoT)、雲端運算(Cloud Computing)及人工智慧(Artificial Intelligence)等技術,依灌區不同特性建置及發展相應之智慧灌溉管理技術,有效強化用水調度及防災應變能力,同時提供決策所需之資訊。

農水署各管理處透過逐年設置水位一流量自動測報設施,掌握灌溉系統內重要取水及配水位置之水位、流量資訊;運用影像監視器(CCTV)取得

之即時影像,瞭解現地水閘門操作情形;藉由介接氣象單位及部分自設之雨量計,瞭解灌區有效降雨量資訊; 最後整合各項監測資訊,透過遠端遙控技術即時啟閉水閘門,有效減少工作站人員往返水閘門之操作時間。相關成果應用於掌握灌溉用水即時動態、輔助灌溉用水之調配,並於防汛期間監控重要排水路水位防災等業務,已有具體成效。

加强農業水資源調度,精進 灌溉用水效率

為因應極端氣候之挑戰,近年農水 署透過推動「水文自動測報暨閘門遠



農業水資源決策支援平台功能架構

端控制」、「農業水資源智慧決策支援平台建置計畫」及「農業水資源精準管理科技決策支援體系之建構」等相關計畫,應用農田水利物聯網、大數據及雲端運算等相關技術,依灌區不同特性建置及發展相應之智慧灌溉管理技術,強化農業水資源之風險管控。

以石門水庫灌區為例,農水署桃園管理處自75年起(桃園農田水利會時期)即規劃建置桃園大圳幹線灌溉管理自動化工程,並逐漸發展為網際網路(Internet)架構。歷經30多年來持續建置與精進,農水署桃園及石門管理處已於所轄重要幹、支線及埤塘建置水位監測站,可即時掌握埤塘蓄水情形及渠道流量資訊,再透過異質性資料之整合及動態系統分析、類神經網路漢算等方法,建立埤塘水量調配建議模式及動態分析管理平台,將埤塘與水庫串聯應用,石門水庫可根據埤塘

石門水庫灌區之水庫與埤塘供需用水演算示 意圖

蓄水情形機動調整放水量,提升農業 灌溉用水調度韌性,並紓緩水庫的供 水壓力。

針對桃園灌區而言,農水署運用 農業部農業試驗所提供之作物判釋圖 資,建立水稻及其他作物的種植面積 區位資訊,並採用區域灌溉水資源供 需用水模擬技術,將田間需水量轉換 為系統水源水量,掌握石門水庫灌區 灌溉用水需求;另一方面,以系統動 力學研發最佳化灌溉配水模擬技術, 建立灌溉水資源供需模擬模式,可快 速分析桃園灌區於不同供灌範圍下所 面臨之缺水風險,以供灌溉管理人員 於不同水文情境下之供灌決策參考。 此外,透過智慧化灌溉配水模組、監 控設備及水閘門遠端自動控制,可大 幅縮短管理研判及水閘門操作時間, 增加管理與操作人員調度彈性,有效 提升水資源運用效率。

縮短洪汛應變時間,提升防 災整備效能力

受極端氣候影響,臺灣地區洪澇 事件頻仍,為減輕水災對農田水利設 施所造成之損害,農水署各管理處透 過水文流量監測及閘門遠端遙控等技 術,及早針對降雨做反應,可有效降 低災害損失,確保農民生命財產的安 全。

以農水署宜蘭管理處為例,為提 升水閘門操作管理效率,宜蘭管理處 以既有水文流量監控設施為基礎,並 於制水門及進水口設置簡易型閘控系

農水署宜蘭管理處簡易閘控系統操作介面示 意圖

統,灌溉管理人員得以利用手機及無 線網路,藉由即時影像掌握現地水 與閘門狀況,再視管理需求遠端啟閉 排水,所以主蘭五結百松地區之 ,於颱風或豪大雨事件時,於颱風或豪大雨事件時,於颱風或豪大雨事件時, 因下游平行水路(屬區域排水)水位高漲 致內水無法正常排出,進而衍生積 致內水無法解決上述問題,農水路 蘭管理處於農田排水與平行水路 。 於農田排水與平行水路 。 於農田排水與經結 。 於農田排水機加裝超音 。 於農田排水機 加裝超音時則 數數抽水機 動換動抽水機 動數動抽水機 道排水。

農水署宜蘭管理處水門全方位智慧化管理架 構圖

藉由整合自動感測設備、遠端遙 控技術及影像監視器之即時畫面,能 減少灌溉管理人員親自前往現地操作 設施之時間成本,有效提升暴雨事件 之反應效率,進而降低災害損失發生 機率;同時亦可將節省之人力運用於 支援其他工作,加強人員之管理與協 調彈性,強化農田水利防災應變之能 力。

結語

近年來隨著全球物聯網感測、雲端 運算服務、大數據分析及人工智慧等科 技發展,農水署除了持續建置圳路水 位、流速、閘門開度及即時影像等監測 設備外,各管理處針對灌區特性因地制 宜,透過結合物聯網及模擬演算等技 術,提供遠端水閘門操作、埤塘蓄水建 議、乾旱及暴雨預測等決策輔助資訊, 配合即時影像、操作介面視覺化等技 術,除可掌握即時水情,亦可進一步將 數據資料運算分析,有效運用各項監測 資料。

面對氣候變遷下極端天氣事件增加,如何善用智慧灌溉系統於旱澇時期採取即時、準確、省時及省力之因應措施,為農田水利事業永續發展之重要任務。農水署將落實既有設備巡檢及維運作業,確保各項監測資料回傳及設備遠端操作順暢無虞;同時持續導入各項科技技術,因應灌區特性建置智慧灌溉系統,以強化農業水資源整體調配及防災韌性。